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Abstract: Androgen receptor (AR) plays an important role in the tumorigenesis and progression of prostate cancer 
(PCa), and is the primary therapeutic target for PCa treatment. AR activity can be regulated via phosphorylation at 
multiple phosphorylation sites within the protein. Modifications by phosphorylation alter AR function, including its 
cellular localization, stability and transcriptional activity, ultimately leading to changes in cancer cell biology and 
disease progression. Here we present a brief overview of AR phosphorylation sites in PCa, focusing on functional 
roles of phospho-AR (p-AR) species, relevance in PCa disease progression, and potential as biomarkers and/or 
therapeutic targets through the use of kinase inhibitors. Additionally, recent evidence has shown the important role 
of AR activity in the cancer associated stroma on PCa growth and progression. The phosphorylation status of epi-
thelial and stromal AR may be distinct; however, the current data available on stromal AR phosphorylation is limited. 
Further research will determine global view on the synergistic effects of phosphorylation across multiple AR sites 
in both epithelial and stromal cells and validate whether together they can be used as prognostic markers and/or 
effective therapeutic targets for PCa. 

Keywords: Androgen receptor, phosphorylation, prostate cancer

Androgen receptor (AR) has been known to play 
an important role in the tumorigenesis and pro-
gression of prostate cancer (PCa) for decades. 
Androgen signaling acts through the AR to regu-
late a number of cellular processes via genom-
ic [1-3] and non-genomic [4, 5] pathways. 
Although AR is robustly activated by ligand 
binding, a number of post-translational modifi-
cations (PTMs) that alter AR activity in the cell 
have been discovered. These AR modifications 
include phosphorylation, acetylation, SUMO- 
ylation, methylation, and ubiquitination [6]. 
Phosphorylation of AR has been the most 
extensively studied AR PTM, with the first phos-
pho-AR (p-AR) species discovered almost 30 
years ago [7]. To date over 15 distinct sites 
within AR have been found to be modified by 
phosphorylation, most of which reside in the 
N-terminal domain [8]. Even with the extensive 
studies of p-AR performed over the years there 
is still much not understood about the role of 
the various phosphorylated AR species. In par-
ticular, it would be of great value to determine 

which of these phosphorylated AR species 
could serve as potential PCa therapeutic tar-
gets with the use of specific kinase inhibitors or 
site specific phospho-antibodies as well as 
prognostic biomarkers. However, more research 
on p-AR functions and cell specific localizations 
is still needed. In this editorial, we aim to give a 
brief overview of AR phosphorylation in pros-
tate cancer and how these studies could impact 
the direction of future research.

A number of sites throughout the AR protein are 
modified by phoshorylation as shown in Figure 
1. Most of the identified phospho-sites in AR 
are serine residues, however there are also 
important threonine and tyrosine residues [8, 
9]. Phosphorylation of these sites has been 
implicated in a number of different cellular 
responses including AR transcriptional activity, 
regulation of AR expression, cell growth, and AR 
degradation. Serine-81 phosphorylation is 
increased in PCa and leads to increased AR 
expression in PCa cells [10, 11]. Phosphorylation 
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of Serine-81 also facilitates AR chromatin 
recruitment and transcriptional activity [12]. 
Functionally, phosphorylation at AR S81 pro-
motes cell growth [13]. AR phosphorylation at 
S213 by Akt has been shown to either inhibit or 
promote cell growth in different cell contexts 
[14]. Phosphorylation of S213 by the PIM1S 
kinase isoform facilitates recruitment of E3 
ubiquitin ligase Mdm2 and destabilizes AR pro-
tein [15]. Phosphorylation of S578 by PAK6 
also leads to AR degradation [16].

Recurrent and in particular, castration resistant 
prostate cancer (CRPCa) is a clinically challeng-
ing condition that occurs when PCa becomes 
resistant to androgen ablation therapy. There is 
evidence that S515 phosphorylation may be a 
predictive marker for relapse in PCa [17]. 
Prognosis for patients with CRPCa is poor and 
multiple mechanisms have been proposed to 
explain the way PCa evades androgen ablation 
therapy. Even in the absence of androgens, AR 
is critical for the growth of CRPCa and still 
remains the primary therapeutic target [18-20]. 
Activation of AR by phosphorylation is one 
potential mechanism for the development of 
CRPCa. Even after androgen ablation therapy 
there is still evidence of low levels of androgens 
in the tumor microenvironment which aid in 
driving the formation of CRPCa [21]. 
Phosphorylation of AR at S81, S213 and S790 
occurs in low androgen environments and may 
sensitize AR to low androgen conditions and be 
an indicator for CRPCa [11, 22]. Further, phos-
phorylation of AR at T850 by the PIM1 isoform 
PIM1-L leads to recruitment of the E3 ligase 

RNF6 and promotes AR mediated transcription 
at low androgen levels [15]. Activation of AR by 
phosphorylation can also act as a means of 
cross-talk with other signaling pathways, par-
ticularly in a low androgen environment rele-
vant to CRPCa. For example, EGF signaling 
results in phosphorylation at S515 to promote 
growth in androgen-free conditions [23]. A 
recent report shows that AR S213 phosphoryla-
tion likely identifies cells with catalytically 
active PIM1 and is correlated with CRPCa [24]. 
In addition, phosphorylation of AR at Y267 by 
Ack1 is correlated with PCa radiation treatment 
resistance in CRPCa patients [25]. In contrast 
to most p-AR associated with poor prognosis, a 
recent study showed phosphorylation at S308 
and S791 can predict enhanced survival in 
CRPCa [26]. It is of great interest to determine 
whether any of these phosphorylation sites for 
AR are directly causal of CRPCa development. 
With increased understanding of the mecha-
nisms and function of AR phosphoryation, there 
is greater potential for development of thera-
peutic targets or prognostic markers for PCa. 

There is still much left to be understood about 
the role of AR phosphorylation in PCa. For 
example, splicing variants of AR have been dis-
covered that are constitutively active in the 
absence of androgens [27]. The impact of AR 
phosphorylation on the expression and func-
tion of these recently identified truncated [28] 
and membrane [29] variants of AR is not known. 
Targeting kinases which phosphorylate sites in 
the truncated variants may be an effective 
means of treatment under conditions where 

Figure 1. Androgen Receptor phosphorylation site and functional denotation. NTD: N-terminal Transactivation Do-
main; DBD: DNA Binding Domain; LBD: Ligand Binding Domain. Red: Growth factor induced phosphorylation; Green: 
Androgen induced phosphorylation; Black: Constitutive phosphorylation. AR functions: 1: nuclear/cytoplasmic shut-
tling; 2: stability; 3: transactivation; 4: DNA binding. PPase: S81 is regulated by PP2A and S650 is regulated by PP1. 
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androgen ablation therapy would have no 
effect. 

AR expression and activity in cancer epithelial 
cells has been the primary focus of study in 
PCa research over the years. However, more 
recent studies implicated the increased impor-
tance of the stromal cells in regulating PCa 
growth. Multiple in vitro cell culture models are 
now available for the study of AR functions [30]. 
Conditioned media from stromal cells can lead 
to S81 phosphorylation of AR in PCa cells [31]. 
Additionally, AR signaling in the stromal cells is 
also important in the regulation of surrounding 
PCa epithelial cell proliferation. For example, 
stromal AR can inhibit growth of PCa cells in the 
presence of androgen in co-culture and co-
xenograft studies [32]. Further, studies with 
P-S213 AR antibody showed increased detec-
tion of phosphorylation at S213 in epithelial 
cells but no expression in surrounding stromal 
cells in PCa [33]. There has been very limited 
research on the role of stromal AR in PCa, and 
particularly the phosphorylation status of stro-
mal AR. Many potential therapies work very well 
in cell culture but fail in vivo and much of this 
could be due to activity in the stromal microen-
vironment. As continued studies show the 
importance of AR activity in PCa stromal cells, 
it will also be important to identify the role of 
phosphorylation in AR positive stromal cells on 
PCa progression. Increased understanding of 
the complex combination of phosphorylation 
signals in the AR in both cancer and cancer-
associated stroma cells will undoubtedly lead 
to more successful treatments in PCa.

Of note, PCa has been described as a more 
aggressive cancer in African American (AA) 
compared to Caucasian (CA) patients [34-36]. 
Further, epithelial AR expression has been 
shown to be increased [37] and stromal AR 
decreased [38] more frequently in AA PCa in 
comparison to CA patients. It is of great interest 
to determine whether AA PCa possess changes 
in AR splice variants and if there are differenc-
es in phosphorylation status, both in the can-
cer epithelial and cancer associated stromal 
cells, that make these cancers more 
aggressive.

New research has shown unique roles of vari-
ous kinases that regulate AR to ultimately mod-
ulate effects on cell growth and these kinases 
may be used as the primary targets for battling 

prostate cancer. As the roles of site-specific AR 
phosphorylation are elucidated, it is important 
to note that each site works in conjunction with 
others, as well as additional PTMs of AR. 
Continued research is necessary to evaluate 
the function of phosphorylation at each phos-
pho-site but also learn how the various AR 
PTMs work together to modulate cell homeo-
stasis in either genomic or non-genomic path-
ways. Identification of single p-AR modifications 
may not be predictive of cell behavior outside 
of the context of other PTMs of AR. Disparate 
activities at separate phospho-sites concur-
rently may explain some of the discrepancies 
found in the literature on p-AR functions. More 
detailed understanding of how the specific 
phosphorylation activities work together will 
ultimately lead to more effective combinatorial 
treatments.
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